

Efecto de las estatinas en los niveles de lipoproteína(a) de adultos: una revisión sistemática

Effect of statins on adult lipoprotein(a) levels: a systematic review Adrian Lazo-Reina ¹ ...

¹ Universidad Laica Eloy Alfaro de Manabí. Facultad de Ciencias de la Salud. Manta, Ecuador.

RESUMEN

Introducción: la enfermedad cardiovascular aterosclerótica es una causa principal de muerte a nivel mundial, con los trastornos lipídicos siendo un factor clave en su desarrollo. La lipoproteína(a) se ha reconocido como un factor independiente de riesgo cardiovascular. Dada la importancia de las estatinas en el tratamiento de las dislipidemias, es crucial investigar su relación con la lipoproteína(a). Objetivo: determinar si hay una asociación entre el uso de estatinas y la reducción de los niveles de lipoproteína(a) en adultos. Método: se realizó una búsqueda en PubMed y Cochrane Library de ensayos clínicos aleatorizados publicados entre 2013 y 2023. Se incluyeron estudios realizados en adultos que utilizaban estatinas como único hipolipemiante. Se siguieron las directrices de la declaración PRISMA de 2020 para la selección y recuperación de artículos. La calidad científica se evaluó con el cuestionario CASPe y la herramienta RoB 2 para el riesgo de sesgo. Resultados: se incluyeron 6 ensayos clínicos (n= 17203). La reducción de la lipoproteína(a) mediante el uso de estatinas en comparación con el placebo no mostró diferencias significativas en la mayoría de los estudios incluidos. Sin embargo, el tratamiento con rosuvastatina se asoció con un cierto aumento en estos niveles. Además, se observó una asociación inversa entre los niveles de lipoproteína(a) y los casos de diabetes. Conclusiones: las estatinas no ejercen un efecto significativo en la reducción de los niveles de lipoproteína(a).

Palabras clave: Aterosclerosis; Estatinas; Lipoproteína(a); Lipoproteínas.

ABSTRACT

Introduction: Atherosclerotic cardiovascular disease is a leading cause of death worldwide, with lipid disorders being a key factor in its development. Lipoprotein(a) has been recognized as an independent risk factor for cardiovascular disease. Given the importance of statins in the treatment of dyslipidemia, it is crucial to investigate their relationship with lipoprotein(a). **Objective:** To determine if there is an association between statin use and the reduction of lipoprotein(a) levels in adults. **Method:** A search was conducted in PubMed and Cochrane Library for randomized clinical trials published between 2013 and 2023. Studies conducted in adults using statins as the only lipid-lowering agent were included. The PRISMA 2020 statement guidelines were followed for article selection and retrieval. Scientific quality was assessed using the CASPe questionnaire and the RoB 2 tool for risk of bias. **Results:** Six clinical trials were included (n= 17203). The reduction of lipoprotein(a) through statin use compared to placebo did not show significant differences in most included studies. However, rosuvastatin treatment was associated with a certain increase in these levels. Additionally, an inverse association between lipoprotein(a) levels and cases of diabetes was observed. **Conclusions:** Statins do not have a significant effect on reducing lipoprotein(a) levels. **Keywords:** Atherosclerosis; Statins; Lipoprotein(a); Lipoproteins

6 OPEN ACCESS

Publicado: 03/08/2024

Recibido: 04/04/2024

Aceptado: 14/07/2024

Citar como:

Lazo-Reina A. Efecto de las estatinas en los niveles de lipoproteína(a) de adultos: una revisión sistemática. 16 de Abril [Internet]. 2024 [citado: fecha de acceso dd/mm/aaaa]; 63: e_1879. Disponible en: https://rev16deabril.sld.cu/index.php/16 04/article/view/1879

CC BY-NC 4.0

1

INTRODUCCIÓN

a enfermedad cardiovascular aterosclerótica es la principal causa de defunciones a nivel mundial. Entre todos los factores de riesgo determinantes para su

desarrollo, los trastornos lipídicos ocupan un lugar importante. Dentro del ámbito de las dislipidemias, se ha investigado con mayor frecuencia el colesterol total, los triglicéridos, el colesterol de lipoproteínas de baja densidad (c-LDL), el colesterol de lipoproteínas de alta densidad (c-HDL) y, más recientemente, la lipoproteína(a) [Lp(a)]¹.

La Lp(a) constituye un factor de riesgo independiente ampliamente reconocido para la enfermedad cardiovascular aterosclerótica. La evidencia derivada de investigaciones experimentales, observacionales y genéticas ha corroborado que el incremento de los niveles de Lp(a) está asociado con un aumento significativo del riesgo de padecer enfermedad coronaria, accidente cerebrovascular isquémico, enfermedad arterial periférica, insuficiencia cardíaca, así como estenosis valvular aórtica y mitral calcificada².

El 90% de las concentraciones séricas de Lp(a) están determinadas genéticamente, y se ha observado que los cambios en el estilo de vida apenas tienen influencia en estas concentraciones³. Esto cobra más relevancia al tener en cuenta que cerca del 20% de la población mundial, equivalente a unos mil cuatrocientos millones de personas, exhibe niveles de Lp(a) superiores a 50 mg/dL, lo que se considera clínicamente relevante⁴. Por lo tanto, se vuelve es esencial investigar si las terapias farmacológicas convencionales, como las estatinas, podrían impactar de manera significativa en la reducción de los niveles de Lp(a).

Las estatinas son altamente efectivas para reducir los niveles de c-LDL y prevenir enfermedades cardiovasculares. Son ampliamente recetadas como tratamiento principal tanto para la prevención primaria como secundaria de enfermedades cardiovasculares. A pesar de su eficacia, se reconoce que no eliminan por completo los riesgos residuales ni tratan todas las lipoproteínas implicadas en la aterosclerosis⁵. En este contexto, es razonable explorar nuevos horizontes, esto incluye el estudio sobre la Lp(a), esta visión ha sido compartida por muchos investigadores durante los últimos años, lo que ha llevado a que esta molécula adquiera una relevancia cada vez mayor en el ámbito científico.

En la actualidad no hay fármacos aprobados destinados específicamente a disminuir los niveles de Lp(a) en la población en general. Las únicas alternativas disponibles son el ácido nicotínico, los inhibidores de PCSK9 y los estrógenos, los cuales tienen una eficacia limitada y solo son apropiados para determinadas poblaciones. Estos fármacos pueden reducir los niveles de Lp(a) entre un 15% y un 39%, aunque no son apropiados para la mayoría de los pacientes, y su impacto en la disminución del riesgo de enfermedad cardiovascular no está completamente claro⁶.

En la práctica clínica, generalmente se realiza una única medición de la Lp(a), suponiendo que esta no varía con la edad ni dentro de los individuos. Esta suposición se basa en gran medida en datos de adultos, y la información sobre los niveles de Lp(a) durante la infancia es limitada. Sin embargo, un estudio llevado a cabo por de Boer et al.⁷, que incluyó a 2740 niños, reveló que los niveles de Lp(a) aumentan con la edad, independientemente de si los niños reciben tratamiento hipolipemiante o no. Estos hallazgos contradicen la noción de que los niveles de Lp(a) permanecen estables a lo largo del tiempo.

La investigación sobre la relación entre estatinas y la Lp(a) es crucial debido al papel central de las estatinas en el tratamiento de trastornos lipídicos. Esta revisión se centra en adultos y analiza exclusivamente ensayos clínicos donde las estatinas son el único agente hipolipemiante utilizado. Este enfoque distingue esta revisión al considerar el papel de otros hipolipemiantes y los cambios en las estatinas con la edad, aspectos a menudo pasados por alto en otras investigaciones.

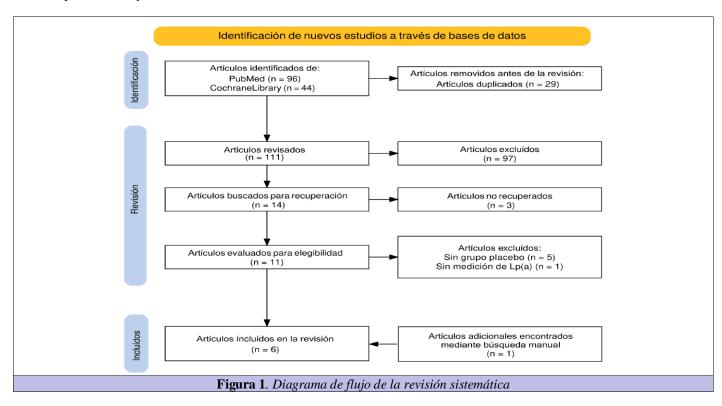
MATERIAL Y MÉTODOS:

En enero de 2024, se llevó a cabo una estrategia de búsqueda en PubMed y Cochrane Library para recopilar ensayos clínicos aleatorizados publicados entre el 1 enero de 2013 y el 31 de diciembre de 2023. Esta estrategia incluyó el uso de una combinación de términos MeSH y operadores booleanos (Tabla 1).

Tabla 1 . Estrategia de búsqueda					
Plataforma	Estrategia				
PubMed	((Hydroxymethylglutaryl-CoA Reductase Inhibitors/ OR "Statin" OR "HMG-CoA reductase inhibitor" OR "Atorvastatin" OR "Rosuvastatin" OR "Simvastatin" OR "Lovastatin" OR "Pravastatin" OR "Fluvastatin" OR "Pitavastatin") AND ("Lp(a) levels" OR "Lipoprotein(a) levels" OR "Plasma Lp(a)" OR "Lipoprotein(a)"))				
CochraneLibrary	#1 MeSH descriptor: [Hydroxymethylglutaryl-CoA Reductase Inhibitors] #2 MeSH descriptor: [Atorvastatin] #3 MeSH descriptor: [Rosuvastatin Calcium] #4 MeSH descriptor: [Simvastatin] #5 MeSH descriptor: [Lovastatin] #6 MeSH descriptor: [Pravastatin] #7 MeSH descriptor: [Fluvastatin] #8 MeSH descriptor: [Lipoprotein(a)] #9 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7) AND (#8)				

Criterios de inclusión

- Ensayos clínicos aleatorizados donde se haya empleado terapia con estatinas.
- Estudios que midan los niveles iniciales de Lp(a) y al menos una vez durante el período de seguimiento.
- Artículos escritos en idioma inglés.


Criterios de exclusión

- Participantes de <18 años.
- Estudios que no cuenten con grupo placebo.
- Artículos no rastreables.
- Ensayos que empleen otros hipolipemiantes además de las estatinas.

Proceso de selección y recuperación

Este proceso se realizó siguiendo las directrices delineadas por la declaración PRISMA de 2020. Cada artículo fue sometido a una revisión independiente, con un revisor siendo el autor y el otro un tutor académico designado por la institución educativa "ULEAM". Los artículos de PubMed se obtuvieron utilizando el filtro "Clinical Trial" y se limitaron a aquellos publicados entre 2013 y 2023, lo que arrojó un total de 96 artículos. En cuanto a CochraneLibrary, se aplicó un filtro para

obtener resultados comprendidos entre 2013 y 2023, lo que arroja un total de 44 artículos. La elaboración del diagrama de flujo (Figura 1) fue realizado con la herramienta desarrollada por Haddaway et al.⁸

Valoración crítica de la calidad científica

Se llevó a cabo una evaluación crítica de los ensayos clínicos utilizando el cuestionario CASPe, mientras que el riesgo de sesgo fue evaluado utilizando la herramienta Cochrane para el riesgo de sesgo (RoB 2). Para para generar el gráfico del reporte de riesgo de sesgo (Figura 2) se empleó la herramienta Robvis desarrollada por McGuinness and Higgins⁹

RESULTADOS:

Resultados de estudios individuales

	Tabla 2. Resultados de estudios individuales						
Estudio	Muestra	Intervención	Resultados				
Nestel, 2013	7863 participantes, hombres y mujeres de entre 31 y 75 años con antecedentes de infarto de miocardio u hospitalización por angina inestable.	Pravastatina (40 mg) Placebo	No se encontraron diferencias significativas en los niveles de Lp(a) entre los pacientes que recibieron pravastatina y los que recibieron placebo. En promedio, las concentraciones de Lp(a) no experimentaron cambios significativos después de un año, con un cambio medio general de -0,3 mg/dL (rango intercuartílico de -2,4 a 1,0 mg/dL).				
Min, 2013	89 participantes, hombres y mujeres con una edad media de 65 años, con antecedentes de accidente cerebrovascular isquémico causado por aterosclerosis de arterias grandes.	Atorvastatina (20mg) Placebo	En el grupo que recibió atorvastatina, se observó que la mediana de los niveles de Lp(a) al inicio del estudio fue de 27,2±1,9 (mg/dL), tras un periodo de seguimiento de 4 semanas cambió a 26,6±2,42 (mg/dL). En contraste, en el grupo placebo, la mediana de los niveles de Lp(a) fue de 26,7±2,32 (mg/dL) al inicio del estudio y de 26,1±2,57 (mg/dL) al finalizar el mismo periodo de seguimiento.				
Zago, 2013	30 participantes, hombres de entre 18 y 56 años, asintomáticos, caucásicos, no fumadores.	Atorvastatina (10 mg) Placebo	En la fase en la que los participantes recibieron el placebo (durante 14 días), se observó una mediana de Lp(a) de 11 ± 12 mg/dL para los genotipos TT (ausencia del polimorfismo T-786C del gen eNOS) y 10 ± 14 mg/dL para los genotipos CC (presencia del polimorfismo T-786C del gen eNOS). Posteriormente, durante la fase en la que los participantes recibieron atorvastatina (durante 14 días), se registró un cambio en la mediana de Lp(a) a 10 ± 9 mg/dL para los genotipos TT y 14 ± 21 mg/dL para los genotipos CC.				
Khera, 2014	7746 participantes con mediciones de Lp(a) disponibles, hombres y mujeres, con edades superiores a 50 y 60 años respectivamente, asintomáticos con niveles bajos de colesterol LDL menores a 130 mg/dL y proteína Creactiva de alta sensibilidad ≥ 2,0 mg/L.	Rosuvastatina (20 mg) Placebo	En el grupo de pacientes que recibieron placebo, se observó que las concentraciones de Lp(a) tanto en el inicio como a los 12 meses se mantuvieron estables y mostraron una alta correlación entre sí (r de Spearman = 0,95; coeficiente de correlación intraclase = 0,93 [IC del 95%, 0,89–0,97]). Resultados similares se evidenciaron en el grupo tratado con rosuvastatina, donde se registró una correlación de Spearman de 0,95 y un coeficiente de correlación intraclase de 0,92 (IC del 95%, 0,87–0,97).				

Capoulade, 2015	220 participantes, hombres con estenosis aórtica calcificada, con una edad mediana de 58 años en rangos de 45 a 71 años.		Después de un año de tratamiento con rosuvastatina, los niveles de Lp(a) aumentaron significativamente en un 20% en comparación con los pacientes que recibieron placebo, cuyos niveles de Lp(a) no cambiaron significativamente.
Kollerits, 2016	1255 participantes, hombres y mujeres con diabetes mellitus tipo 2 en hemodiálisis, con una edad mediana de 66 años y un rango de edad de 18 a 80 años.	Atorvastatina (10mg y 20mg) Placebo	El cambio en las concentraciones de Lp(a) entre el inicio y aproximadamente 6 meses después no difirió entre los grupos tratados con atorvastatina y placebo. La mediana del cambio en las concentraciones de Lp(a) fue de -0,43 mg/dL en el grupo tratado con atorvastatina y -0,22 mg/dL en el grupo placebo, sin que se observara diferencia significativa.

Reportar sesgos

Se realizó una evaluación del riesgo de sesgo en seis ensayos clínicos que investigaron los cambios en los niveles de Lp(a). Ninguno de los estudios fue considerado de bajo riesgo de sesgo en general. Aunque todos los ensayos clínicos afirmaron haber sido aleatorizados, la mayoría carecía de información detallada acerca de los métodos utilizados para la generación y el ocultamiento de la secuencia de asignación. Además, la falta de acceso a los protocolos originales fue una limitación común.

Efecto de las estatinas en comparación con el placebo

En el ensayo de Nestel et al.¹⁰, los niveles de Lp(a) no variaron entre el grupo placebo y el grupo de pravastatina, tanto al inicio del estudio como después de un año (13,4 y 14,3 mg/dL; P=0,11 y 12,9 y 13,4 mg/dL; P=0,40 para los grupos de placebo y pravastatina, respectivamente). Similarmente, Min et al.¹¹ no encontró diferencias significativas en los niveles de Lp(a) entre los grupos de atorvastatina y placebo. Sin embargo, Capoulade et al.¹² informaron un aumento significativo en los niveles de Lp(a) en pacientes tratados con rosuvastatina (+20%; p<0,05), mientras que no hubo cambios en los pacientes que recibieron placebo. Kollerits et al.¹³ describe una mediana de cambio en las concentraciones de Lp(a) de -0,43 mg/dL, y Zago et al.¹⁴ describe una mínima variación en los niveles de Lp(a) entre los grupos de placebo y tratamiento, independientemente del genotipo del polimorfismo T-786C del gen eNOS. Khera et al.¹⁵ señala que, en su estudio no se observó cambio en los niveles de Lp(a) al administrar tanto rosuvastatina como placebo, ya que en ambos casos se registró un cambio medio de cero.

Influencia de trastornos metabólicos y terapia con estatinas en los niveles de Lp(a)

Nestel et al.¹⁰ identificó una tendencia que sugiere una asociación inversa entre los niveles de Lp(a) y los casos de diabetes: el estudio incluyó 391 participantes con niveles de Lp(a) de ≤13,9 mg/dL, 161 entre 13,9-44,1 mg/dL, 78 entre 44,1-73,7 mg/dL y 46 por encima de >73,7 mg/dL; esta tendencia es estadísticamente significativa (p<0,001); pero de igual modo, las estatinas no generaron cambio en los niveles de Lp(a). Estos resultados son similares a los hallazgos de Kollerits et al.¹³, quien estudió exclusivamente pacientes con diabetes, de un total de 1223 participantes, 917 de ellos contaban con valores de Lp(a) de <41,78 mg/dL [cuartil 1 (≤4,99mg/dL): 306 participantes; cuartil 2 (5,00−11,53): 306 participantes; cuartil 3 (11,54−41,78): 305 participantes] mientras que, solo 306 contaban con valores de Lp(a) >41,78 mg/L (cuartil 4). En este estudio los cambios no fueron significativos, reportan una mediana de cambio de Lp(a) de -0,43 mg/dL para el grupo de atorvastatina y -0,22 mg/dL en el grupo placebo.

Efecto de las estatinas según su tipo

Los estudios realizados por Nestel et al.¹⁰ con pravastatina a dosis de 40 mg, Zago et al.¹⁴ con atorvastatina a dosis de 10 mg, Min et al.¹¹ con atorvastatina a dosis de 20 mg, y Kollerits et al.¹³ con atorvastatina a dosis de 10 mg y 20 mg, no arrojaron cambios significativos en los niveles de Lp(a). Contrariamente a los hallazgos encontrados en estos estudios, los resultados obtenidos con rosuvastatina fueron distintos. Por ejemplo, Capoulade et al.¹² trabajaron con rosuvastatina a dosis de 40 mg y observaron un incremento significativo en los niveles de Lp(a) en los pacientes tratados con rosuvastatina (+20%; p<0,05). Otro estudio que empleó rosuvastatina fue el realizado por Khera et al.¹⁵, en el que se administró rosuvastatina a dosis de 20 mg. Según este estudio, aunque el cambio medio en los niveles de Lp(a) con rosuvastatina y placebo fue cero, se evidenció un ligero cambio positivo, pero estadísticamente significativo en la distribución general de los niveles de Lp(a). El cambio en los percentiles 25 y 75, respectivamente, de los niveles de Lp(a) fue de -1 y 5 para rosuvastatina, y de -3 y 2 para placebo (P<0,0001).

DISCUSIÓN

La mayoría de ensayos clínicos examinados en esta revisión sistemática sugieren que las estatinas tienen un impacto limitado en los niveles de Lp(a). Estos hallazgos coinciden con los resultados de un metaanálisis realizado por Wang et al. 16, quienes concluyeron que las estatinas no muestran un impacto clínicamente relevante en los niveles de Lp(a), y que no hay diferencia significativa entre los diferentes tipos y dosis de estatinas. Sin embargo, estudios de gran escala publicados recientemente muestran resultados opuestos. Por ejemplo, Feng et al. 17, llevaron a cabo un estudio de cohorte retrospectivo que incluyó a 200000 personas, con un seguimiento longitudinal de hasta 10 años; en este estudio se encontró que el uso de estatinas se asoció con un mayor riesgo de elevación de Lp(a) en comparación con aquellos que no las usaban.

No está completamente claro por qué existe disparidad en la evidencia. Una posible explicación radica en los métodos utilizados para medir la Lp(a), lo cual sería coherente dada la naturaleza heterogénea de la apo(a), la proteína característica de la Lp(a). Existe una notable variabilidad en el tamaño de la apo(a), con más de 40 isoformas diferentes, lo que conlleva a la existencia de más de 40 tamaños distintos de partículas de Lp(a). Esta diversidad es excepcional y contrasta con la típica uniformidad en el tamaño que caracteriza a otras proteínas circulantes. En la mayoría de personas, más del 80% poseen dos variantes de apo(a) de diferentes tamaños, cada una heredada de uno de sus progenitores. Por ejemplo, una persona puede tener dos isoformas pequeñas, una pequeña y otra grande, o dos isoformas grandes. Los niveles de Lp(a) en la sangre están influenciados por la producción total de apo(a) en cada una de estas variantes, siendo la contribución principal generalmente proveniente de la isoforma más pequeña¹⁸.

Dependiendo de la isoforma específica, hasta el 70% de la proteína puede estar compuesta por repeticiones altamente similares de KIV2. Estas repeticiones son la fuente de posibles problemas en las mediciones de Lp(a), particularmente relacionados con los anticuerpos y calibradores utilizados en los sistemas de ensayo. Es probable que los anticuerpos empleados para detectar apo(a) estén dirigidos hacia un patrón repetitivo presente en esta proteína. Como resultado, puede surgir un sesgo en las mediciones, con las siguientes consecuencias: las concentraciones de las isoformas más pequeñas con menos repeticiones de KIV, que comúnmente indican niveles elevados, pueden ser subestimadas en los resultados. Por otro lado, las cantidades de las isoformas más grandes con más repeticiones de KIV, que generalmente indican niveles bajos, pueden ser sobreestimadas 19.

Será necesario estandarizar los métodos de medición de Lp(a) para garantizar la precisión y comparabilidad de los resultados entre diferentes laboratorios y estudios. A pesar de posibles discrepancias en la medición de los niveles de Lp(a), la noción de que las

estatinas elevan dichos niveles no carece de fundamento. Las estatinas tienden a aumentar los niveles de Lp(a) en un 10% a 20%, particularmente cuando se analizan los datos como niveles pre y post-tratamiento con estatinas en pacientes individuales, en lugar de los niveles promedio en grupos¹⁸. Una posible explicación radica en que las estatinas no solo inducen la expresión del receptor de LDL, sino también la del ARNm de la lipoproteína(a), lo que contribuye al aumento en la síntesis de apolipoproteína(a). Esto sugiere que el incremento en la concentración de Lp(a) asociado con la terapia de estatinas se debe, al menos en parte, a un aumento en la producción de Lp(a)²⁰.

La influencia de los factores genéticos suele ser predominante en los niveles de Lp(a), pero se ha observado en la literatura que ciertas enfermedades también pueden ejercer un efecto sobre estos niveles. Por ejemplo, enfermedades inflamatorias como la artritis reumatoide, el lupus eritematoso sistémico, el síndrome de inmunodeficiencia adquirida y la insuficiencia renal crónica se han asociado comúnmente con niveles elevados de Lp(a)²¹. Sin embargo, esta revisión sistemática ha descrito una correlación inversa entre la diabetes mellitus tipo 2 (DM2) y los niveles de Lp(a), lo cual resulta paradójico dado que tanto la Lp(a) como la DM2 son factores de riesgo para la aterosclerosis²². Una posible explicación para esta paradoja podría encontrarse en estudios in vitro que sugieren que las altas concentraciones de insulina pueden suprimir la síntesis de apo(a) a nivel post-transcripcional²³. Esta observación adquiere sentido dado que los pacientes con diabetes tipo 1 muestran niveles de Lp(a) similares a los de individuos sanos, siempre y cuando mantengan un adecuado control de la enfermedad y no presenten disfunción renal²².

CONCLUSIONES

En la mayoría de los ensayos clínicos analizados en esta revisión sistemática, no se encontró un cambio significativo en los niveles de Lp(a) después del tratamiento con estatinas en diversos grupos de pacientes, que incluyen aquellos con antecedentes de infarto de miocardio, accidente cerebrovascular isquémico, estenosis aórtica calcificada y diabetes mellitus. Sin embargo, debido a la alta variabilidad de la apo(a), es probable que estos resultados no sean completamente precisos. Para futuras investigaciones sobre la Lp(a), será fundamental estandarizar los métodos de medición. En todo caso, es evidente que las estatinas muestran una eficacia limitada, lo que subraya la necesidad imperiosa de desarrollar nuevas estrategias terapéuticas.

REFERENCIAS BIBLIOGRÁFICAS

- 1. Arvanitis M, Lowenstein CJ. Dyslipidemia. Ann Intern Med [Internet]. 2023 [citado 29/03/2024];176(6): ITC 81-96. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37307585/
- 2. Koutsogianni AD, Liamis G, Liberopoulos E, Adamidis PS, Florentin M. Effects of Lipid-Modifying and Other Drugs on Lipoprotein(a) Levels—Potent Clinical Implications. Pharmaceuticals 2023, Vol 16, Page 750 [Internet]. 2023 [citado 08/09/2023];16(5):750. Disponible en: https://www.mdpi.com/1424-8247/16/5/750/htm
- 3. Sosnowska B, Surma S, Banach M. Targeted Treatment against Lipoprotein (a): The Coming Breakthrough in Lipid Lowering Therapy. Pharmaceuticals [Internet]. 2022 [citado 08/09/2023];15(12). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781646/
- 4. Tsimikas S, Stroes ESG. The dedicated «Lp(a) clinic»: A concept whose time has arrived? Atherosclerosis [Internet]. 2020 [citado 30/03/2024];300:1-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32234580/
- 5. Zhu L, Fang Y, Gao B, Jin X, Zheng J, He Y, et al. Effect of an increase in Lp(a) following statin therapy on cardiovascular prognosis in secondary prevention population of coronary artery disease. BMC Cardiovasc Disord [Internet]. 2022 [citado 30/03/2024]; 22(1): 1-9. Disponible en: https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-022-02932-y
- Krittanawong C, Maitra NS, El-Sherbini AH, Shah N, Lavie CJ, Shapiro MD, et al. Lipoprotein(a) in clinical practice: A guide for the clinician. Prog Cardiovasc Dis. 2023; 79: 28-36. DOI: https://doi.org/10.1016/j.pcad.2023.07.006
- 7. de Boer LM, Hof MH, Wiegman A, Stroobants AK, Kastelein JJP, Hutten BA. Lipoprotein(a) levels from childhood to adulthood: Data in nearly 3,000 children who visited a pediatric lipid clinic. Atherosclerosis [Internet]. 2022 [citado 30/03/2024]; 349: 227-32. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35361488/
- 8. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews. 2022; 18(2): e1230. DOI: https://doi.org/10.1002/c12.1230
- 9. McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021; 12: 55–61. DOI: https://doi.org/10.1002/jrsm.1411
- 10. Nestel PJ, Barnes EH, Tonkin AM, Simes J, Fournier M, White HD, et al. Plasma lipoprotein(a) concentration predicts future coronary and cardiovascular events in patients with stable coronary heart disease. Arterioscler Thromb Vasc Biol. 2013; 33(12): 2902-8. DOI: https://doi.org/10.1161/ATVBAHA.113.302479
- 11. Min L, Shao S, Wu X, Cong L, Liu P, Zhao H, et al. Anti-inflammatory and anti-thrombogenic effects of atorvastatin in acute ischemic stroke. Neural Regen Res. 2013; 8(23): 2144-54. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25206523/

- 12. Capoulade R, Chan KL, Yeang C, Mathieu P, Bossé Y, Dumesnil JG, et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol. 2015; 66(11): 1236-46. DOI: https://doi.org/10.1016/J.JACC.2015.07.020
- 13. Kollerits B, Drechsler C, Krane V, Lamina C, März W, Dieplinger H, et al. Lipoprotein(a) concentrations, apolipoprotein(a) isoforms and clinical endpoints in haemodialysis patients with type 2 diabetes mellitus: Results from the 4D Study. Nephrology Dialysis Transplantation. 2016; 31(11): 1901-8. DOI: https://doi.org/10.1093/ndt/gfv428
- 14. Zago VH de S, dos Santos JET, Danelon MRG, da Silva RMM, Panzoldo NB, Parra ES, et al. Effects of atorvastatin and T-786C polymorphism of eNOS gene on plasma metabolic lipid parameters. Arq Bras Cardiol [Internet]. 2013 [citado 24/03/2024]; 100(1): 14-20. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23250834/
- 15. Khera A V., Everett BM, Caulfield MP, Hantash FM, Wohlgemuth J, Ridker PM, et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: An analysis from the JUPITER trial (justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin). Circulation. 2014; 129(6): 635-42. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.004406
- 16. Wang X, Li J, Ju J, Fan Y, Xu H. Effect of different types and dosages of statins on plasma lipoprotein(a) levels: A network meta-analysis. Pharmacol Res. 2021; 163: 105275. DOI: https://doi.org/10.1016/J.PHRS.2020.105275
- 17. Feng T, Li Y, Xue X, Yang W, Li Q, Huang Y, et al. Association of statin use and increase in lipoprotein(a): a real-world database research. Eur J Med Res [Internet]. 2023 [citado 28/03/2024]; 28(1): 1-9. Disponible en: https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-023-01155-x
- 18. Tsimikas S. A Test in Context: Lipoprotein(a): Diagnosis, Prognosis, Controversies, and Emerging Therapies. J Am Coll Cardiol. 2017; 69(6): 692-711. DOI: https://doi/10.1016/j.jacc.2016.11.042
- 19. Kronenberg F. Lipoprotein(a) measurement issues: Are we making a mountain out of a molehill? Atherosclerosis. 2022; 349: 123-35. DOI: https://doi.org/10.1016/J.ATHEROSCLEROSIS.2022.04.008
- 20. Tsushima T, Tsushima Y, Sullivan C, Hatipoglu B. Lipoprotein(a) and Atherosclerotic Cardiovascular Disease, the Impact of Available Lipid-Lowering Medications on Lipoprotein(a): An Update on New Therapies. Endocrine Practice [Internet]. 2023 [citado 28/03/2024]; 29(6): 491-7. Disponible en: http://www.endocrinepractice.org/article/S1530891X22009016/fulltext
- 21. Fujino M, Nicholls SJ. Lipoprotein(a): cardiovascular risk and emerging therapies. Expert Rev Cardiovasc Ther [Internet]. 2023 [citado 29/03/2024]; 21(4): 259-68. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/14779072.2023.2197593
- 22. Kostner KM, Kostner GM. Lp(a) and the Risk for Cardiovascular Disease: Focus on the Lp(a) Paradox in Diabetes Mellitus. Int J Mol Sci. 2022; 23(7): 3584. DOI: https://doi.org/10.3390/ijms23073584
- 23. Lamina C, Ward NC. Lipoprotein (a) and diabetes mellitus. Atherosclerosis [Internet]. 2022 [citado 29/03/2024]; 349: 63-71. Disponible en: http://www.atherosclerosisjournal.com/article/S0021915022001952/fulltext

AUTORÍA

Adrián Lazo-Reina: conceptualización, investigación, metodología, administración del proyecto, validación-verificación, redacción del borrador original, redacción, revisión y edición.

FINANCIACIÓN

El autor no recibió financiación para la realización del presente artículo.

Este artículo de Revista 16 de abril está bajo una licencia Creative Commons Atribución-No Comercial 4.0. Esta licencia permite el uso, distribución y reproducción del artículo en cualquier medio, siempre y cuando se otorgue el crédito correspondiente al autor del artículo y al medio en que se publica, en este caso, Revista 16 de abril.